4.7 Summary 201

structure, and so on. For each attribute of the relation, the system may maintain a
tuple recording the relation identifier, attribute name, type, size, and so forth. Dif-
ferent DBMSs keep different amounts of information in the directory relations. How-
ever, because the implementation is usually as relations, the same data manipulation
language that the DBMS supports can be used to query these relations. '

In this section we briefly examined some implementation issues. Implementors
of databases and DBMSs must be aware that there exists much more detail than that
contained in the model.

Summary

In this chapter we studied the relational data model, consisting of the relational data
structure, relational operations, and the relational integrity rules. This model borrows
heavily from set theory and is based on sound fundamental principles. Relational
operations are applied to relations, and the result is a reiation.
Conceptually, a relation can be represented as a table; each column of the tab}
represents an attribute of the relation and each row represents a tuple of the relpfoi%
Mathematically a relation is a correspondence between a number of sets ag 48

subset of the cartesian product of these sets. The sets are the domains of the a"'," SLEALIGAL R E
of the relation. g 575 cos -

Duplicate tuples are not permitted in a relation. Each tuple can be idgnii
uniquely using a subset of the attributes of the relation. Such a minimum Sul§{:»
called a key (primary) of the relation. The unique identification property of the &
is used to capture relationships between entities. Such a relationship is represented
by a relation that contains a key for each entity involved in the relationship.

Relational algebra is a procedural manipulation language. It specifies the oper-
ations and the order in which they are to be performed on tuples of relations. The
result of these operations is also a relation. The relational algebraic’ operations are
union, difference, cartesian product, intersection, projection, selection, join, and di-
vision.

Relational calculus consists of two distinct calculi, tuple calculus and domain
calculus. In relational calculus queries are expressed using variables, a formula in-
volving these variables, and compatible constants. The query expression specifies the
result relation to be obtained without specifying the mechanism and the order used
to evaluate the formula. It is up to the underlying database system to transform these
nonprocedural queries into equivalent, efficient, procedural queries. In relational tu-
ple calculus the variables represent tuples from specific relations; in domain calculus
the variables represent values from specific domains.

Since relational calculus specifies queries as formulas, it is important that these
formulas generate result relations of finite cardinality in an acceptable period of time.
This in tum requires that the formulas be defined on a finite domain and the result
be within that domain. The domain consists of relations and constants- appearing in
the formulas. Such formulas are called safe. With a safe formula, it is possible to
convert a query expression from one representation to another.

In the next chapter we consider a number of commercial query languages based
on relational algebra and calculus.

202 Chapter 4 The Relational Model

cardinality n-tuple predicate calculus
degree projection predicate

arity relation scheme one-place predicate
projecting unique identification monadic predicate
join_ nonredundancy two-place predicate
set prime attribute atomic formula
members associative relation well-formed formula (wff)
intension foreign key bound variable
extension target free variable

union domino deletion closed

intersection cascading deletion open

cartesian product union compatible tuple calculus
difference set-theoretic union atom

atomic domain restriction operation domain calculus
application-independent domain theta join safe
application-dependent domain equi-join fragmentation
structured domain natural join tuple identifier
composite domain relational calculus ‘

4.1 For the relations P and Q shown in Figure N, perform the following opérations and show the
resulting rejations.

(@) Find the projection of Q on the attributes (B,C).
(b) Find the natural join of P and Q on the common attributes.

() Divide P by the relation that is obtained by first selecting those tuples of Q where
the value of B is either b, or b, and then projecting Q on the attributes (C,D).

Figure N For Exercise 4.1.
P Q

A B (o D B C D
a b, C2 d; b, .Cn d;
ay by] d, by C d,
a bl_ . ‘C2 d| bz C2 dl
a b] C2 dz bl [dz
ay b, Cy d, b, C2 d;
a; b, C2 d

a b, c d

ay bl € dz

a; by C2 d;

4.7 Summay 203

4.2 Given the E-R diagram in Figure O, give the most suitable relational database scheme to

4.3

implement this database. For each relation, choose a suitable name and list corresponding
attributes, underlining the primary key. For each relation, also identify the foreign keys.
Could any problems result as a consequence of tuple additions, deletions, or updates?

Figure O For Exercise 4.2.

LN) (M—) (oowu—)
r_J

QUALITY

() () (i)

For the database of Figure O, write relational algebra and calculus expressions to pose the
following queries:

(@) Get the supplier details and the price of bolts for all suppliers who supply ’bolts’.
(b) Find details of parts that suppliers who supply ‘bolts’ costing less than $0.01 are
capable of supplying, with the parts being of a quality better than ‘x’.
Given the relational schemes:

ENROLL (S#, C#, Section)—S# represents student number

TEACH (Prof, C#, Section)—C# represents course number

ADVISE (Prof, S#)—Prof is thesis advisor of S#

PRE_REQ (C#, Pre_C#)—Pre_C# is prerequisite course

GRADES (S#, C#, Grade, Year)

STUDENT (S#, Sname)—Sname is student name
Give querics expressed in relational algebra, tuple calculus, and domain calculus for the
following queries: ‘ ’

(a) List all students taking courses with Smith or Jones.

(b) List all students taking at least one course that their advisor teaches.

(c) List those professors who teach more than one section of the same course.

(d) List the courses that student *‘John Doe’’ can enroll in, i.e., has passed the

necessary prereguisite courses but not the course itself.

_ Chapter 4 The Relational Model

4.7

4.9

4.10
4.11

4.12

An orchestra database consists of the following relations:

CONDUCTS (Conductor, Composition)
REQUIRES (Composition, Instrument)
PLAYSA{Player, Instrument)

LIKES (Player, Composition)

Give relational algebra, tuple calculus, and domain calculus queries for the following
queries? v
(a) List the players and their instruments who can be part of the orchestra when
Letitia Melody conducts.
(b) From the above list of players, identify those who would like the composition
they are to play.
Give the equivalent
(a) English statement,
(b) domain calculus, and
(c) algebra
expressions for the following tuple calculus query: '
{t|t € rel, A 3s(s € rel, A (s.c = t.b))}
given the relations rel,(A,B) and rel,(C,D).
Convert the following domain calculus query
{<A,B>| <A,B> €rel, A B='B,' \y B="B,’}
into
(a) an English statement
(b) relational algebra
(c) tuple calculus.
Investigate the physical implementation details of a relational DBMS with which you are
familiar. Under what circumstances would any file organization not supported by the system
be beneficial?
An inverted file management system allows for the definition of inverted files and supports
queries of the form “‘List records (or tuples) where the attribute_name has value x,”’ and a
Boolean combination of such queries. Discuss how the relational algebra operations can be
handled using such a system.
Consider the queries in Examples 4.44 through 4.49. Rewrite the queries in tuple calculus;
however, use the quantifier \y instead of 3 and vice versa.
Consider the queries in Examples 4.52 through 4.57. Rewrite the queries in domain calculus;
however, use the quantifier \y instead of 3 and vice versa.
Using the relations ASSIGNED_TO, EMPLOYEE, and PROJECT given in the text, generate
the following queries in relational algebra.
(a) Acquire details of the projects for each employee by name.
(b) Compile the names of projects to which employee 107 is assigned.
(c) Access all employees assigned to projects whose chief architect is employee 109.
(d) Derive the list of employees who are assigned to all projects on which employee
109 is the chief architect.
(©) Get all project names to which employee 107 is not assigned.
() Get complete details of employees who are assigned to projects not assigned to
employee 107.

4.7 Summary 205

4.13 Kepeat Exercise 4.12 using tuple calculus.
4.14 Repeat Exercise 4.12 using domain calculus.

4.15 Give the tuple calculus expressions for the relational algebraic operation of (a) the union of
two relations P and Q, (b) the difference P—Q, (c). the projection of relation P on the
attribute X, (d) the selection og(P), (e) the division of relation P by Q, i.e., P + Q.

4.16 Consider the following relations concerning a driving school. The primary key of each
relation is in boldface.
STUDENT : (St_Name, Class#, Th_Mark, Dr_Mark)
STUDENT_DRIVING_TEACHER : (St_Name, Dr_T_Name)
TEACHER_THEORY_CLASS : (Class#, Th.T_Name)
TEACHER_VEHICLE : (Dr_T_Name, License#)
VEHICLE : (License#, Make, Model, Year)

A student takes one theory class as well as driving lessons and at the end of the session
receives marks for theory and driving. A teacher may teach theory, driving, or both. Write
the following queries in relational algebra, domain calculus, and tuple calculus.

vehicles. .
(b) Find the pairs of students satisfying the following conditions.

They have the same theory mark and
They have different theory teachers and
They: have the same driving mark and
They have different driving teachers

(c) Find the list of students who are taught neither theory lessons nor driving lessons
by ‘‘Johnson’’ (teacher). -

(d) Find the list of students who have better marks than ‘‘John’’ in both theory and
driving.

(f) Find the list of students who have more marks than the average theory mark of
class 8 (Class#).

(g) Find the list of teachers who can drive all the vehicles.

4.17 Comment on the correctness of the following relational calculus solutions to the query: *‘Get
employee numbers of employees who do not work on project COMP453."°

(a {t{IEmp#] | t € ASSIGNED_TO A

\Vu(u € ASSIGNED_TO A\ t [Emp#] = u[Emp#]

N\ u[Project#] #+ 'COMP453')}

® {e|3p (<p.e> € ASSIGNED_TO

AV pi.&i (<p1,&;> € ASSIGNED_TO

A p, = 'COMP453’ N\ e # ¢,)))}

4.18 Comment on the correctness of the following relational calculus solutions to the query:
*‘Compile a list of employee numbers of employees who work on all projects.’’

(@) {t{Emp#]| t € ASSIGNED_TO N\
3p,u (p € PROJECT \ u € ASSIGNED_TO
N\ piProject#] = u [Project#]
At [Emp#] = u[Emp#]

®) {e|\ pA<pum.c;> € PROJECT

N <p,e> € ASSIGNED_TO

206 Chapter 4 The Relational Model

- 3 p,,e, (<p;,&,> € ASSIGNED_TO
Apr=pN\e=e))}
(©) {e| 3p (<p,e> € ASSIGNED_TO
A vV P1,€i (<p,,e.> & ASSIGNED_TO
V pr # COMP453 \/ ¢, + e))}
) {e|3p (<p,e> € ASSIGNED_TO
AV pi(<pi,ny,¢;> € PROJECT
— <p;,e> € ASSIGNED_TO))}

4.19 Comment on the correctness of the following relational calculus solution to the query:
‘‘Acquire the employee numbers of employees, other than employee 107, who work on at
least one project that employee 107 works on.”’

{e 13p.p:1.e1 (<p,e> € ASSIGNED_TO
N <p,,e;> € ASSIGNED_TO
Apy=pANe #e Ne =107}

Bibliographic Notes

The original concept of the use of relations to represent data was presented by Levien and
Maron (Levi 67). The formal relational model as we know it today, however, was first pro-
posed by E. F. Codd (Codd 70). Relational algebra was defined by Codd in his original paper
and relational calculi in a subsequent paper (Codd 72). Since Codd's original article, the
relational model has been extensively studied and is covered in most database texts, including
Date (Date 86), Korth and Silberschatz (Kort 86), Maier (Maie 83), and Ullman (Ullm 82). -
Maier’s text gives a comprehensive theoretical treatment of the relational model.

Bibliography

(Beer 77) C. Beeri, R. Fagin, & J. H. Howard, ‘‘A Complete Axiomisation for Functional and Multivalued
Dependencies,”” Proc. ACM SIGMOD Record Conference, Toronto, Aug. 1977, pp. 47-61.

(Beer 78) C. Beeri, P. A. Bernstein, & N. Goodman, *‘A Sophisticate’s Introduction to Database Normalization

Theory,” Proc. 4th International Conference on Very Large Data Bases, Berlin, 1978, pp.
113-123.

(Bern 76) P. A. Bemstein, ‘‘Synthesizing Third Norrﬁal FormA Relations from Functional Dependencies,’’ ACM
Transactions on Database Systems 1(4), 1976, pp. 277-298.

(Brod 82) M. L. Brodie, & J. W. Schmidt, eds., ‘‘Final Report of the ANSI/X3/SPARC DBS-SG Relational
Database Task Group,”” SPARC-81-690, ACM SIGMOD Record 12(4), 1982, pp. 1-62.

(Buss 83) V. Bussolati, S. Ceri, V. De Antenollis, & B. Zonta, *‘Views Conceptual Design,”" in S. Ceri, ed.,
Methodology and Tools for Data Base Design. North Holland, Amsterdam 1983, pp. 25-55.

(Codd 70) E. F. Codd, ‘A Relational Model for Large Shared Data Banks,”* Communications of the ACM
13(6), 1970, 377-387.

(Codd 72) E. F. Codd, *‘Relational Completencss of Data Base Sublanguages,” in R. Randall, ed., Data Base
Systems. Englewood Cliffs, NJ: Prentice-Hall, 1972, pp. 65-98.

(Codd 81) E. F. Codd, “‘Data Models in Database Management,”” ACM SIGMOD Record 11(2), 1981.

(Codd 82) E. F. Codd, “‘Relational Database: A Practical Foundation for Productivity,”” 1981 ACM Turing
Award Lecture, Communications of the ACM 25(2), 1982, pp. 109-117. :

i
(Date 86) C. J. Date, **An Introduction to Database Systems,”’ 4th ed. Reading, Mass: Addison Wesley, 1986.

4.7 Summary 207

(Fagi 77) R. Fagin, *‘Multivalued Dependencies and a New Normal Form for Relational Databases,”” ACM
Transactions of Database Systems 2(3), 1977, pp. 262-278.

(Gall 78) H. Gallaire & J. Minker, Logic and Databases. New York: Plenum Press, 1978.
(Kort 86) H. F. Korth & A. Silberschatz, Database System Concepts, New York: McGraw-Hill, 1986.
(Kowa 79) R. Kowalski, Logic for Problem Solving, New York: North-Holland, 1979.

(Lacr 77) M. Lacroix & A. Pirotte, “Domain-Oriented Relational Languages,”* Proc. 3rd International
Conference on Very Large Data Bases, October 6-8, 1977. Tokyo, IEEE, New York, pp.
370-378.

(Levi 67) R. Levien, & M. E. Maron, *‘A Computer System for Inference Execution and Data Retrieval,
Communications of the ACM 10(11), 1967, pp. 715-721.

(Lum 79) V. Lum et al., 1978 New Orleans Data Base Design Workshop Report, IBM Yorktown Heights (RJ
2554), 1979.

(Maie 83) D. Maier, The Theory of Relational Databases,"’ Rockville, MD: Computer Science Press, 1983.

(Niem 84) T. Niemi & K. Jarvelin, “A Straightforward Formalization of the Relational Model,”” ACM
SIGMOD Record 14(1), 1984, pp. 15-38.

(Piro 82) A. Pirotte, ‘A Precise Definition of Basic Relational Notions and of the Relational Algebra,” ACM
SIGMOD Record 13(1), 1982, pp. 30-45. ‘

(Ullmn 82) J. D. Ullman, Principles of Database Systems, 2nd ed. Rockville, Md: Computer Science Press,
1982.

(Yang 86) C. C. Yang, Relational Databases. Englewood Cliffs, NJ: Prentice-Hall, 1986.

210

Chapter 5§ Relational Database Manipulation

Figure 5.1

The ORDR relationship.

Figure 5.2
.

BILL (Bill#, Day, Table#, Waiter#, Total, Tip)

Bill#: integer—umque bill identifier

Day: date—in yyyymmdd unsigned decimal digits format
Table# : integer—table number

Waiter# : integer—employee identifier

Total: real—total amount

Tip: real

ORDR (Bill#, Dish#, Qty)

Bill#: integer—bill identifiex
Dish#: integer—dish identifier
Qty: integer—number of dish ordered by cliem

The DUTY_ALLOCATION relationship (Figure 5.3) between various positions
(POSITION) and employees (EMPLOYEE) in a restaurant can be described by the
attributes Day and Shift. Each position in the restaurant is defined by a unique Posting
—No and requires a (minimum) skill specified by Skill. The structure of the tables for
these entities and the relationship is given below. Some tuples from these relations
are given in Figure 5.4.

Some tuples from the MENU, BILL,_ and ORDR relations.

MENU ORDR

Dish# | Dish_Description Price Bill# Dish# Qty
50 Cortee 2.50 9234 50 2
100 Scrambled eggs 7.50 9234 250 2
200 Special du jour 19.50 9235 300 1
250 Club sandwich 10.50
300 Pizza 14.50
BILL
Bill# Table# Day Waiter# Total Tip
9234 12 - 19860419 123456 26.00 3.90
9235 17 19860420 123461 14.50 2.20

S.1 Introduction 211

Figure 5.3 The DUTY_ALLOCATION relationship.

EMPLOYEE (Empi_No, Name, Skill, Pay_Rate)
Empl_No: integer—unique identifier

Name: string—employee’s name

Skill: string—employee’s skill

Pay_Rate: real—hourly pay rate

POSITION (Posting_No, Skill)

Posting_No: integer—unique position identifier
Skill: string—skill required for the position

Figure 5.4 some Tuples from EMPLOYEE, POSITION, DUTY_ALLOCATION relations.

EMPLOYEE POSITION

Empl_No Name Skill Pay_Rate Posting_No Skill
123456 Ron waiter 7.50 321 waiter
123457 Jon bartender 8.79 322 bartender
123458 Don busboy 4.70 323 busboy
123459 Pam hostess 4.90 324 hostess
123460 Pat bellboy 4.70 325 maitre d’
123461 Ian maitre d’ 9.00 326 waiter
123471 Pierre .| chef 14.00 350 chef
123472 Julie chef 14.50 351 chef

DUTY_ALLOCATION

Posting_No Empl_No Day Shift
321 123456 19860419 1
322 123457 19860418 2
323 123458 19860418 1
321 123461 19860420 2
321 123461 19860419 2
350 123471 19860418 1
323 123458 19860420 3
351 123471 19860419 1

214 Chapter § Relational Database Manipulation

alter table existing-table-name
add column-name data-type [. . . .]

alter table EMPLOYEE
add Phone_Number decimal (10)

The create index statement allows the creation of an index for an already exist-
ing relation. The cotumns to be used in the generation of the index are also specified.
The index is named and the ordering for each column used in the index can be
specified as either ascending or descending. The cluster option could be specified to
indicate that the records are to be placed in physical proximity to each other. The
unique option specifies that only one record could exist at any time with a given
value for the column(s) specified in the statement to create the index. (Even though
this is just an access aid and a wrong place to declare the primary key.) Such col-
umns, for instance, could form the primary key of the relation and hence duplicate
tuples are not allowed. One case is the ORDR relation where the key is the combination
of the attribute Bill#, Dish#. In the case of an existing relation, an attempt to create an
index with the unique option will not succeed if the relation does not satisfy this unique-
ness criterion. The syntax of the create index statement is shown below:

create [unique] index name-of-index
on existing-table-name
(column-name [ascending or descending]
[,column-name[order] . . .])
{cluster]

The following statement causes an index called empindex to be built on the
columns Name and Pay_Rate. The entries in the index are ascending by Name value
-and descending by Pay_Rate. In this example there are no restrictions on the number
of records with the same Name and Pay_Rate.

create index empindex
on EMPLOYEE (Name asc, Pay_Rate desc);

An existing relation or index could be deleted from the database by the drop
SQL statement. The syntax of the drop statement is as follows:

drop table existing-table-name;
drop index existing-index-name;

5.3 Data Manipulation: SQL

In this section we present the data manipulation statements supported in SQL. Ex-
amples of their usage are given in subsequent sections. SQL provides the following
basic data manipulation statements: select, update, delete, and insert.

Select Statement

The select statement, the only data retrieval statement in SQL, specifies the method
of selecting the tuples of the relation(s). The tuples py‘ocessed are from one or more

5.3 Data Manipulation: SQL 218

relations specified by the from clause of the select statement; the selection predicates
are specified by the where clause. The select statement could also specify the projec-
tion of the target tuples. Do not confuse the select verb of SQL with o, the select
operation of relational algebra. The difference is that the select statement entails
selection, joins, and projection, whereas o is a simple selection.

The syntax of the select statement is as follows:

select [distinct] <target list>
from <relation list>
[where <predicate>]

The distinct option is used in the select statement to eliminate duplicate tuples
in the result. Without the distinct option duplicate tuples may appear in the resulit.

The <target list> is a method of specifying a projection operation of the result
relation. It takes the form:

<target list> :: = <attribute name> [,<target list>]

The from clause specifies the relations to be used in the evaluation of the state-
ment. It includes a relation list:

<relation list> :: = <relation name> [<tuple variable>]
[,<relation list>]

A tuple variable is an identifier; the domain of the tuple variable is the relation
preceding it.

The where clause is used to specify the predicates involving the attributes of
the relation appearing in the from clause.

An example of the use of a simple form of select to find the values for the
attribute Name in the employee relation is given below:

select Name
from EMPLOYEE

The result of this select operation is a projection of the EMPLOYEE relation on
the attribute Name. Unlike the theoretical version of projection, this projection con-
tains duplicate tuples. The reason for not eliminating these duplicates is the large
amount of processing time required to do so. If the theoretical equivalent is desired,
however, the distinct clause is added to the select statement, as shown below:

select distinct Name
from EMPLOYEE

The predicates used to specify selection are added to a select statement by the
use of the where clause. Additional features and examples of the select statement
will be discussed in following sections.

Update Statement

The update statement is used to modify one or more records in a specified relation.
The records to be modified are specified by a predicate in a where clause and the
new value of the column(s) to be modified is specified by a set clause. The syntax
of the update statement is shown on the next page.

216 Chapter 5 Relational Database Manipulation

update <relation> set <target_value_list>
{where <predicate>]

where the <target value list> is of the form:

<target value list> ::= <attribute name> = <value expression>
[,<target value list>1

The following statement changes the Pay_Rate of the employee Ron in the EM-
PLOYEE relation of Figure 5.4:

update EMPLOYEE
set Pay_Rate = 7.85
where Name = 'Ron’

Delete Statement

The delete statement is used to delete one or more records from a relation. The
records to be deleted are specified by the predicate in the where clause. The syntax
of the delete statement is given below:

delete <relation™> [where <predicate>]

The following statement deletes the tuple for employee Ron in the EMPLOYEE
relation of Figure 5.4.

delete EMPLOYEE
where Name = 'Ron’

If the where clause is left out, all the tuples in the relation are deleted. In this
case, the relation is still known to the database although it is an empty relation. A
relation along with its tuples could be deleted by the drop statement.

Insert Statement

The insert statement is used to insert a new tuple into a specified relation. The value
of each field of the record to be inserted is either specified by an expression or could
come from selected records of existing relations. The format of the insert statement
is given below:

insert into <relation>
values (<value list>)

where the <value list> takes the form:
<value list> :: = <value expression> {,<value list>]

In another form of the insert statement, a list of attribute names whose values
are included in the <value list> are specified:

insert into <relation> (<target list>)
values (<value list>)

v5.3 Data Manipulation: SQL 217

and the <target list> takes the torm:
<target list> ::= <attribute name> [, <target list>]

The value clause can be replaced by a select statement, which is evaluated, and
the result is inserted into the relation specified in the insert statement.

The following statement reinserts a tuple for the employee Ron in the EM-
PLCYEE relation of Figure 5.4

insert into EMPLOEE
values (123456, ‘Ron’, 'waiter’, 7.50)

5.3.1 Basic Data Retrieval

The SQL mapping operation basically consists of a selection and join followed by a
projection. The select verb of SQL is used to represent this mapping operation.

Example 5.1 Here we give two simple examples of the data retrieval operation.

(a) The Posting_No and Empl_No values from the DUTY_ALLOCA-
TION relation can be retrieved by the SQL statement shown below. For the
DUTY_ALLOCATION table of Figure 5.4, the statement produces the re-
sult shown in part i of Figure A.

select Posting_No, Empi_No
from DUTY_ALLOCATION

The above query resembles the relational algebra projection operation.
This is not strictly a projection because duplicates are not removed, as
shown in part i of Figure A. Duplicates may be removed by using the dis-
tinct option in the select statement, as indicated on page 218. The distinct
option is applied to the entire result relation (Posting_No, Empl_No). The
result of this statement is shown in part ii of Figure A.

Figure A (i) A simple projection via select with duplicates tuples; (ii)
Eliminating duplicate tuple by the distinct clause in the se-
lect statement.

Posting_No Empl_No Posting_No "Empl_No
321 123456 321 123456
322 123457 322 123457
323 123458 323 123458
321 123461 321 123461
321 123461 350 123471
350 123471 351 123471
351 123471 (ii)

®

218

Chapter §

Relational Database Manipulation

5.3.2

select distinct Posting_No, Empl_No

from DUTY_ALLOCATION

(b) *‘Get complete details from DUTY_ALLOCATION.”

select *

from DUTY_ALLOCATION
The asterisk character is used as shorthand for the full attribute list.

shown in Figure 5.4. =

Condition Specificatioﬁ

The result of this statement is the entire DUTY_ALLOCATION relation

'Examplo 5.2

SQL supports the following Boolean and comparison operators: and, or, not, =, #
(not equal), >, =, >, <. These operators allow the formulation of more complex

predicates, which are attached to the select statement by the where clause. Such -

predicates in the where clause specify the selection of specific tuples and/or a join of
tuples from two relations (i.e., they provide the capability of the selection and join
operations of relational algebra). If more than one of the Boolean operators appear
together, not has the highest priority while or has the lowest. Parentheses may be

used to indicate the desired order of evaluation.

“Get DUTY_ALLOCATION details for Empl_No 123461 for the month of
April 1986.”" This query is given on page 219. The result of the query is
shown in part i of Figure B.

b]

Figure B (i) Seiecting specified tuples followed by projection; (i) Or-
dering the result; (iii) Selecting tuples specified by disjunc-
tive predicates.

Posting_ Shift Day Posting_ Shift Day

No No
321 2 19860420 321 2 19860419
321 2’ 19860419 321 2 19860420

(i) (ii)

Posting_No Empl_No Day Shift

321 123461 19860420 2

321 123461 19860419 2

323 123458 19860420 3

(iii)

8.3 Data Manipulation: SQL 219

select Posting_No, Shift, Day

from DUTY_ALLOCATION

where Fmpl_No= 123461 and
Day >>19860401 and
Day =19860430

If the result had to be rearranged, the order clause could be specified as
shown below. The result of this statement on our sample database is shown
in part ii of Figure B.

select Posting_No, Shift, Day

from DUTY_ALLOCATION

where Empl_No = 123461

order by Day asc

The following statement selects the posting information about employee
123461 for the month of April 1986, as well as for all employees for shift
3 regardless of dates. The result of this statement on our sample database is
shown in part iii of Figure B.

select *

from DUTY_ALLOCATION

where (Empl_No= 123461 and
Day >19860401 and
Day =9860430) or
Shift = 3) ®

5.3.3 Arithmetic and Aggregate Operators

SQL provides a full complement of arithmetic operators and functions. This includes
functions to find the average, minimum, maximum, sum, andto count the number-
of occurrences.

Let us first consider the SQL facility to specify arithmetic operations on attribute
values.

Example 5.3 Consider the relation SALARY(Empi_No, Pay_Rate, Hours), used for com-
puting the weekly salary in our sample database. Part of this relation is
shown in part i of Figure C. Consider the evaluation of the weekly salary
(gross). This operation can be expressed in SQL as shown below. The result
of this statement is shown in part ii of Figure C.

select Empl_No, Pay_Rate*Hours
from SALARY
where Hours > 0.0

222 Chapter 5 Relational Database Manipulation

This statement is evaluated' by performing a cartesian product of the tables T,
T,, and thence the tuples satisfying the where clause are selected. These tuples are
then projected on the attributes T,.a;,, . . . Tj.aj,, Ta.321, . . . Ts.82m. The rela-
tional algebraic form of this statement is
"I”.. A T IR (TI NTZ)

= 8. . .

In general the select statement represents the following relational algebraic op-
erations where X is the cartesian product of the relations represented by the from
list.

T (reprosented by the target list)¥ (represented by the where clause)(X))

Joins involving more than two relations can be similarly encoded in SQL. Quer-
ies of this form need data from more than one relation. In the case where the join
involves a relation with itself, the query needs data from more than one record of
the same relation.

Exampie 8.5 The following SQL query is used to retrieve the shift details. for employee
Ron:

select Posting_No, Day, Shift

from DUTY_ALLOCATION, EMPLOYEE

where DUTY_ALLOCATION.Empl_No=EMPLOYEE. Empl_no

and Name = 'Ron’

Note that attributes Empl_No have been qualified, since the names of these
attributes are identical. The result of the query on the DUTY_ALLOCA-
TION, EMPLOYEE tables of Figure 5.4 is the triple (321, 19860419,
. &

SQL uses the concept of tuple variable from relational calctlus. In SQL a tple
variable is defined in the from clause of the select statement. The syntax of the
declaration requires that the name of the tuple variable be declared after the relation
name in the from clause, as shown below:

from relation_name, tv, [,relauoanameq tvg,. ..}

Weusemplevamblcsmﬁumple56tocompmtwomplesoftlwrelauon
EMPLOYEE. ﬂwtwomplcvanablese.,andeqmdeﬁnedondlesamemlmon

Examplie 8.6 “Getemployeeswnoserateofpaylsmomthanorequaltothcrateofpay
‘ of employee Pierre."”

select e..Name, e,.Pay_Rate
from EMPLOYEE e,, EMPLOYEE e,

"This is a conceptual explanation. The actual evaluation of the query may be optimized.

5.3 Data Manipulation: SQL 223

where ¢,.Pay_Rate > e,.Pay_Rate
and e, . Name = ‘Pierre’

The result of this query for the EMPLOYEE table shown in Figure 5.4 is
he tuple (Julie, 14.50). W

Now we turn to an example of a join involving one relation.

Example 5.7 *“Compile all pairs of Posting_Nos requiring the same Skill.”’

select p,.Posting_No, p,.Posting_No
from POSITION p, POSITION p,
where p,.Skill = p,.Skill

and p,.Posting_No < p,.Posting_No

WMANGALORE

P p2. :
Posting_No Posting_No

321 326
350 351

For the POSITION table of Figure 5.4, this SQL statement generates the
result shown above. Posting_Nos 321 and 326 require a skill of waiter and
Posting_Nos 350 and 351 require a skill of chef. The predicate p,.Posting._
No < p,.Posting_No is used to avoid including tuples such as (326, 321),
(350,350), (351,350), etc., in the result. W

The following is an example that requires joining two relations.

Example 5.8 Consider the requirement to generate the eligibility of employees to fill a
given position. Each position (Posting_No) requires a skill and only tliose
employees who have this skill are eligible to fill that position. Thus to gen-
erate the position eligibility relation, we are required to join the relations
EMPLOYEE and POSITION for equal values of the common attribute Skill."
#e following SQL statement implements the join. The result of the join is
shown on the next page.

select EMPLOYEE.Empl_No,POSITION.Posting_No,POSITION.Skill

from EMPLOYEE, POSITION
where EMPLOYEE.Skill = POSITION.Skill

224 Chapter S Relational Database Manipulation

EMPLOYEE. POSITION. POSITION.
Empl_No Posting_No Skill
123456 321 waiter
123456 326 waiter
123457 322 bartender
123458 323 busboy
123459 324 hostess
123461 325 maitre d’
123471 350 chef
123471 351 chef
123472 350 chef
123472 351 chef
|
The following is an example of joining three relations.
Exampie 5.9 Consider the requirement to generate the itemized bill for table 12 for the

date 19860419. This requires details from three relations, BILL, ORDR,
and MENU. The itemized bill can be generated using the following query.
The result is shown in Figure D.

Figure D ltemized bill

result

Bill# Dish_Description Price Qty Price*Qty

9234 Coffee 2.50 2 5.00
9234 . | Club sandwich 10.50 2 21.00

select BILL.Bill#, MENU.Dish_Description, MENU Price,
ORDR.Qty, MENU.Price*ORDR.Qty
from BILL, MENU, ORDR
where BILL.Bill# = ORDR.Bill#
and ORDR.Dish# = MENU.Dish
and BILL.Table# = 12
and BILL.Day = 19860419

A select statement can be nested in another select statement. The result of
the nested select statement is a relation that.can be used by the outer select
statement. An alternate method of generating this itemized bill is by using
the nested select statement (which forms a sub-query) as shown below:

select ORDR.Bill#, MENU.Dish_Description, MENU.Price,
ORDR.Qty, MENU Price*ORDR.Qty

5.3 Data Manipulation: SQL 223

5.3.5

from MENU, ORDR
where ORDR.Dish# = MENU.Dish#
and ORDR.Bill# =
(select BILL.Bill#
from BILL
where BILL.Table# =
and BILL.Day = 19860419) =B

Set Manipulation

Any

SQL provides a number of set operators: any, in, all, exists, not exists, union, minus,

intersect, and contains. These constructs, based on the operations used in relational
calculus and relational algebra, are used for testing the membership of a value in a
set of values, or the membership of a tuple in a set of tuples, or the membership of
one set of values in another set of values When using these operators, remember
that the SQL statement ¢ select . .” returns a set of tuples (which is-a set of values
in cases where the target listisa smgle attribute). We describe these set manipulation
operators below and illustrate them with a number of examples.

The operator any allows the testing of a value against a set of values. The compari-
sons can be one of {<, =<, >, =, =, #}, and are specified in SQL as the operators,
<any, <any, >any, =any, =any, and #any (not equal to any). We refer to any -
one of these operators by the notation 8any.

In general, the condition

c 6any (select X from . . .)

evaluates to true if and only if the comparison ‘‘c Oany {at least one/ g fn;m the
result of the select X from . . . }’is true.? Let us illustrate this condffion with the
following example:

Example 5.10 | Let the result of

select X
from rel
where P

be the set of values {'30’, ‘40, '60’, '70'}. Then the following statements, .
which compare the two sets on both sides of the 8any operators, are valid
and give the result indicated on the next page.

2"l"hqunplementmonofanymdnlll»eadstos(mleoonl‘l.lnonsmce #+any actually is implemented, in some systems,-to be
not equal to some (any one of the set of values). For example {'50'} #any ({'30’, ‘40, '50', '70'}) is evaluated to true since
50 + 30. To justify this implementation, muundumuhmfamymﬂmsyﬁem'suniqﬂemenmmudsw
give results that do ot agree with the interpretation given here.

Chapter § Relational Database Manipulation

All

(select p.Posting_No
from POSITION p
where p.Skill ='chef’)

Here the first nested subquery finds the positions where an employee is as-
signed. The second nested subquery finds the set of positions requiring a
chef’s skill. The main select statement considers each employee and for that
employee finds all the positions and tests if this is a superset of the positions
requiring a chef’s skill. If this test evaluates to a true value, the attribute
Name is output. For our sample database, the result of this query is

(Pierre). B

The set operator all is used, in general, to show that the condition

c 9all (select X from . . .)

evaluates to true. This is so, if and only if the comparison *‘c 8 all the values from
the result of (select X from . . .)’ is true. We illustrate the various format of this

condition in the following example:

Example 5.14

- Let the result of:

select X
from rel
where P

be the set of values {'30’, ‘40’, '60’,,'70’}. Then each of the following
statements is valid and produces the resiilts indicated: '

'S0’ =all ({'30’, '40', ‘60, '70'}) is false

29’ <alt ({'30’, '40’, '60’, '70'}) is true

'S0’ +all ({'30', ‘40", '60’, '70}) is true

70’ >all ({'30’, '40', '60’, '70'}) is false

70’ =all ({"30’, '40’, '60’, ‘70’ is true W

Example 5.15 below uses the all condition to find the employee with the lowest

pay rate from the EMPLOYEE relation.

Exampie 5.18

“‘Find the employees with the lowest pay rate.”’

select Empl_No, Name, Pay_Kate
from EMPLOYEE
where Pay_Rate <all

(select Pay_Rate

from EMPLOYEE)

